

# Exhibit VI Example Precursor Mission



## LAND CONTROL MISSISSING TO THE MISSISSING THE MISSISSING TO THE MISSISSING THE MISSISSING TO THE MISSISSING THE MISSISSING TO THE MISSISSING TO THE MISSISSING TO THE MISSISSI

## Mars Deep Drill, for Pathways Search for Evidence of Past Life and Explore Hydrothermal Habitats



Earliest Possible "Pathways-Compatible" Launch: May 2018



## **Pathway Mapping**

Science Emphasis for Deep Drill

| Pathways                         | Past Life | Present Life |  |  |
|----------------------------------|-----------|--------------|--|--|
| Search for Evidence of Past Life | 2018      | _            |  |  |
| Explore Hydrothermal Habitats    | 2018      | 2018         |  |  |
| Seach for Present Life           | _         | 2020         |  |  |
| Explore Evolution of Mars        | _         | -            |  |  |

Bold, red text indicates the case described in this package.



#### Deep Drill Level 1 Requirements (1 of 2)

#### **Past Life Pathways**

- Launch an in situ surface mission to Mars in the 2018 launch opportunity
  - For Explore (Ancient) Hydrothermal Habitats Pathway, site should have high probability of being ancient hydrothermal habitat
  - For Search for Evidence of Past Life Pathway, site should have high probability of past habitability
- Characterize the geology (stratigraphy, structure, chemistry) and geophysics of the shallow Martian crust at one site, particularly as it relates to interpreting past habitability
  - Determine the geological processes which have resulted in deposition, hydrothermal alteration, diagenesis, and tectonic modification of the Martian geologic record
  - Investigate the seismic and thermal characteristics of the Martian subsurface
  - Obtain visual and spectroscopic images of the local landing site to establish a context for the subsurface sample analysis and to determine the surface landing location
- Search for past life in the subsurface at one site
  - Determine the concentration of frozen and liquid water in the Martian subsurface,
     and its textural relationships to the non-volatile components
  - Evaluate the presence/absence of fossil biosignatures



#### Deep Drill Level 1 Requirements (2 of 2)

#### **Past Life Pathways**

- Obtain a meteorological record at one site
- Using a drill, bring tens of samples to the surface from various depths down to at least (10-50) m
- Land at any location between 30 deg S and 30 deg N latitude at altitudes up to 0 km (MOLA reference) where landing hazards are acceptable
  - Land within 10 km (3 sigma) of target for Search for Evidence of Past Life Pathway
  - Land within 10 m (3 sigma) of target for Explore (Ancient) Hydrothermal Habitats Pathway
- Be consistent with planetary protection category IVc
- Employ at least two methods of approach navigation
- Provide for reliable real-time telecommunications with an orbiting asset during entry, descent, landing, and post-landing critical events to obtain data essential for fault analysis, in the event of a failure, and for general performance characteristics
- For feed-forward to future missions, obtain and analyze data related to the performance of the drill, including anomalies



### Mars Deep Drill: Search for Past Life

#### Science

- Science objectives [MEPAG #]
  - Characterize the geology (stratigraphy, structure, chemistry) and geophysics of the shallow Martian crust at one site, particularly as it relates to interpreting past habitability
    - Determine as a function of depth the geologic processes which have resulted in deposition, hydrothermal alteration, diagenesis, and tectonic modification of the Martian geologic record [18, 20, 63, 74, 79, 83, 92, 121, 134, 144]
    - Investigate the seismic and thermal characteristics of the Martian subsurface [80, 109]
    - Obtain visual and spectroscopic images of the local landing site to establish context for the subsurface sample analysis and to determine the surface landing location [61]
  - Search for past life in the subsurface at one site
    - Determine the concentration of frozen and liquid water in the Martian subsurface, and its textural relationship to the non-volatile components [3, 123, 56, 4, 11, 13, 15, 10]
    - Evaluate the presence/absence of fossil biosignatures [4, 11, 13]
  - Record the meteorology at one site for at least one Martian year [34, 115, 126, 128]

#### Candidate Instruments

- Drill (10 to 50m)
- Organics & Evolved Gas Analyzer
- Life Detection Suite
- Mineralogy/Chemistry Lab
- Microimager
- Stereo Panoramic Camera with Point Spectrometer
- Meteorological Station
- Drill camera
- Downhole
  - Ice/Water Detector
  - Borehole Camera
  - Heat Flow with Thermal Experiments
  - Seismic Station



## Mars Deep Drill: Search for Past Life Science Feed Forward

- Evidence of life would alter nation's Mars program
- Confirmation of liquid water would support further search for life
- Understanding subsurface processes would allow us to more accurately predict :
  - Subsurface life detection targets
  - Possible resource availability for future human missions



## Mars Deep Drill: Search for Past Life MEPAG Investigations Addressed

MEPAG Investigations Addressed by Priority

Deep Drill Past Life

| Pty | Goal I<br>Life                                           | Pty | Goal II<br>Climate                                                     | Pty | Goal III<br>Geology                                           | Pty | Goal IV<br>Prepare for Humans          |
|-----|----------------------------------------------------------|-----|------------------------------------------------------------------------|-----|---------------------------------------------------------------|-----|----------------------------------------|
| 1   | Map 3-D distribution of water                            |     | Processes controlling present distributions of water, CO2, dust        |     | Present state, distribution and cycling of water              | 1   | Radiation environment                  |
|     |                                                          |     |                                                                        | 1   |                                                               |     | Demo hazard avoid, precision landing   |
|     | Location of sedimentary deposits                         | 1 1 | Physical and chemical records of past climates                         |     | Configuration of Mars' interior                               | 0   | High-capacity power                    |
|     |                                                          |     |                                                                        | 0   | Sedimentary processes and their evolution                     |     | Bio/Chemical properties of soil & dust |
|     | Complex organic molecules in rocks and soils             |     |                                                                        | 2   |                                                               | 2   | Demo Mid L/D                           |
| 2   | Subsurface water in-situ                                 | 2   | Stable isotope and noble gas composition of bulk atmosphere            |     |                                                               |     | Communications infrastructure          |
|     |                                                          |     |                                                                        |     | History of the magnetic field  Calibrate the cratering record | 0   | Distribution of accessible water       |
|     | Search for Fossils                                       | 2   |                                                                        |     |                                                               | 3   | Demo high-Mach parachute               |
|     |                                                          |     | Stratigraphic records of past climate change at polar layers, ice caps |     |                                                               | O   | Navigation infrastructure              |
|     | Changes in carbon inventory                              | 0   |                                                                        | 3   |                                                               |     | Atmospheric parameters                 |
|     |                                                          |     |                                                                        |     | Thermal and chemical evolution                                | 4   |                                        |
|     | Evidence of life forms at high-priority sites            | 0   |                                                                        |     |                                                               |     | Demo ISCP/ISPP                         |
| 3   |                                                          | 3   | Long-term trends in the present climate                                | 0   | Igneous processes and their evolution                         | 5   | Electrical effects in atmo             |
|     | Timing of hydroligical activity                          |     |                                                                        | 4   |                                                               |     | Ziodiidai diidaa iii diiild            |
|     |                                                          |     |                                                                        |     |                                                               |     | Access and extract water               |
| 4   | Array of potential energy sources                        |     | Rates of escape of key species from the atmosphere                     | 5   | Surface-atmosphere interactions                               | 6   | Engineering properties of surface      |
|     |                                                          |     |                                                                        |     |                                                               |     | Demo deep drilling                     |
|     |                                                          | 4   |                                                                        |     |                                                               |     | Demo deep drilling                     |
|     |                                                          |     |                                                                        | 6   | Large-scale vertical structure of the crust                   | 7   | Radiation shielding of regolith        |
|     |                                                          |     |                                                                        |     |                                                               |     |                                        |
| 5   | Nature and inventory of organic carbon in soils and ices |     | Search for microclimates                                               |     |                                                               |     |                                        |
|     |                                                          |     |                                                                        |     |                                                               |     | Ability of soil to support life        |
|     |                                                          | 1 5 |                                                                        | 7   | Tectonic history of the crust                                 | 8   |                                        |
|     |                                                          |     |                                                                        |     |                                                               |     |                                        |
|     |                                                          |     |                                                                        |     |                                                               | 9   |                                        |
| 6   | Distribution of oxidants                                 |     | Production and reaction rate of key photochemicals                     |     |                                                               |     | Characterize candidate sites           |
|     |                                                          |     |                                                                        | 8   | Hydrothermal processes                                        |     |                                        |
|     |                                                          |     |                                                                        |     |                                                               | 10  |                                        |
|     |                                                          |     |                                                                        |     |                                                               |     | Fate of typical human effluents        |
|     |                                                          |     |                                                                        |     |                                                               |     |                                        |



### Mars Deep Drill: Search for Past Life

#### Mission\*

#### Scenario

- Land at site thought to have been habitable for ancient life. Assume latitude between 30 S and 30 N. Altitude limited to 0 km (MOLA ref.).
- Drill to at least 10 to 50 m (50 m used here) with continuous or frequent downhole science.
- Frequently deliver samples to surface (50 samples minimum), including at depth.
  - All samples imaged. At least 50 samples analyzed.
- Drill rate varies with rock characteristics and power
  - For this study, assumed 30 cm/hour average
- Assume 4-sol repeatable cycle
  - 3 sols of drilling and sample retrieval @ 6 hrs/sol
  - 1 sol of analysis @ 6 hrs/sol
- 176 sols allocated for drilling and sample analysis, including approx. 42 sols of drilling margin (50%).
   Additional 600 sols of post-drilling geophysical monitoring and 10 sols for startup.

#### Trajectory

- Type I
- $C_3 \text{ of } 9.2 \text{ km}^2/\text{s}^2$
- Flight time 8 months
- Arrival V ~3.3 km/s

#### ■ LV: Delta IV 4040

LV Capability > 2160 kg at this C<sub>3</sub>

#### Launch Date

May 2018 (assumes 20 day launch period)

#### Arrival Date

- January 2019
- Ls = 321 deg

#### Geometry

- Direct entry
- 10 km landing error

Data relevant to 2018 launch opportunity



### Mars Deep Drill: Search for Past Life

## Spacecraft\*



- Performance attributes
  - Precision Landing (10 km)
  - Power source
    - ◆ Generating ~110 W
  - Allocated Payload Mass = 324 kg
    - Includes: Drill w/ realignment & relocation systems (~225 kg), Downhole & Surface Science, Sample Preparation & Distribution, Robotic Arm, PanCam
  - Autonomous drill operations
  - Planetary Protection category IVc

- Flight system elements
  - Lander
    - 800 kg wet, including payload
    - Design derived previous mission
  - Entry System
    - 492 kg wet
  - Cruise Stage
    - -337 kg wet
  - Total Launch Mass = 1629 kg
- Margins
  - 30% mass contingency
  - 30% power contingency
  - 30% (486 kg) launch margin



## Mars Deep Drill: Search for Past Life Technology / Infrastructure\*

- Critical Technology Needs [MEPAG #]
  - Autonomous deep drilling with low mass and power needs [177, 178, 183, 184]
  - Instruments
    - Down hole, e.g., ice/water detector; geophysical monitoring
    - Life-detection instrument(s)
  - Sample Preparation and Distribution
     (SPAD) System advances
  - Planetary Protection advances (IVc)
  - Phoenix and MSL: Precision landing (10 km) [154]
  - MSL
    - SPAD gen. 1
    - Long-term survivability

- Infrastructure Need
  - MTO or replacement telecom orbiter
- Technology cutoff FY14 (TRL 6)
  - PDR Nov. 2014
- Candidate Technology Demos for Future Missions
  - None identified to date
- Infrastructure feed forward
  - None identified to date

<sup>\*</sup> Data relevant to 2018 launch opportunity



## Mars Deep Drill: Search for Past Life Implementation\*

- Implementation Mode
  - AO-supplied instruments
  - Drill competed
- Heritage Assumptions
  - Upgrade of previous mission flight elements
  - MSL: See previous chart
  - Design Maturity
    - ◆ Team X study August 2003, October 2001, November 1999; study of upgrade to Phoenix Mar. 2004
- Schedule
  - May 2018 Launch
  - 43 month Phase CD (starts Dec. 2014)
  - Information return begins January 2019